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Abstract— The objective of this paper is to show how the 

Differential Ant-Stigmergy Algorithm (DASA) can be used to 

solve an Optimal Control Problem (OCP). A version of this 

algorithm devoted to search a good solution for an OCP is 

presented. Because this kind of problems has usually a large 

computational complexity, a technique to reduce it is presented. 

This one exploits a particularity of DASA related to the coding 

of the problem's solution. In the first phase, DASA find out a 

good solution in a small number of iteration by adopting a rough 

coding of the control input. The second phase is a kind of zoom 

of the search space around this solution, which becomes initial 

solution, with a finer coding of the control input. 

Keywords— optimal control problem, metaheuristic, Ant 

Colony Optimization 

I. INTRODUCTION  

Many papers have treated metaheuristics in order to solve 
optimization problems. Ant Colony Optimization algorithm 
was created for solving a combinatorial optimization problem 
that can be modeled as an optimal path in a graph [1]. Because 
ACO has proved to be an efficient algorithm, it is a challenge 
for many authors to adapt this algorithm to continuous 
optimization problems. The key aspect on this subject is how 
to model the depositation of the pheromone by the artificial 
ants. Differential Ant Stigmergy Algorithm (DASA) [2] has 
turned out to be a success adaptation of ACO to continuous 
problems. This algorithm takes a solution of the problem and 
modifies the values of its components using some variations 
(offsets) in order to create another solution. The offsets belong 
to a discretized domain. The paradigm of solutions 
construction using a path in a graph and updating the 
pheromone distribution acquired an efficient extension. 
DASA was successfully applied to solve benchmark problems 
[2] and diverse engineering applications [3]. Improvements of 
DASA's feats through an elitist strategy have been proposed 
and analyzed in [4] and [5]  

Among the optimization problems there is a special 
category: the optimal control problems. Metaheuristic 
algorithms have already been developed in order to solve an 
optimal control problem (OCP) concerning a dynamic 
environment. An optimal solution is a sequence of values for 
the control variables, covering the control horizon that 
optimizes a performance index. The first metaheuristics used 

to solve OCPs have been the Simulated Annealing, Genetic 
Algorithms and Evolutionary Programming [6], [7]. [8]. 
Particle Swarm Optimization has been also used by the 
authors in this context either in its continuous formulation [9], 
or in its discrete version [10]. In the book [11], besides many 
engineering problems, applications solving OCP that are using 
metaheuristic algorithms are presented and analyzed. 

This paper presents DASA and gives a description that is 
devoted to optimal control. Because OCPs have usually a 
large computational complexity, a method to decrease it is 
proposed. This one consists in a technique in two phases that 
can globally reduce the number of iterations until finding the 
optimal solution and implicitly the number of objective 
function evaluations. 

Remark 1: DASA yields an offline "optimal" solution, which 
is a sequence of values for the control variables, covering the 
control horizon. This control sequence may only be used 
within an open-loop control structure. This is a possible but 
unusual situation (for known reasons). Firstly, the 
implementer has to verify that DASA yields good solutions, 
has good convergence and its computational complexity can 
justify the possibility of using it in a closed-loop structure. The 
goal of this paper is only to give to the reader a tool to make 
this analysis. If DASA passes these tests, further work has to 
be done by the implementer, in order to design the controller 
and integrate it in a closed loop structure. An effective 
approach is presented in [12] using Model Predictive Control. 

The section II describes minimally an OCP and DASA in 
order to fix the scientific framework. The lecturer will find 
more details in [3]. The way of coding the control input is 
emphasized. The description of DASA is adapted to an OCP 
solving. An example of using DASA to solve an OCP is given 
in section III, where the concentration of a component in a 
Batch Reactor has to be maximized. In section IV, an 
evaluation of the computational complexity is presented in 
connection with the number of iterations until the convergence 
is apprehended. In this context, a technique that can reduce the 
computational complexity of DASA is proposed. A number of 
tests with MATLAB system are carried out and their results 
are described in section V. These results proved that the 
technique proposed to reduce the complexity turned out to be 
efficient. Some conclusions are drawn in section VI.  
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II. DASA FOR OPTIMAL CONTROL PROBLEMS 

A given OCP considers the environment evolution on a 
control horizon [t0, tN], with discrete moments ti=t0+i·T, 
i=0,…, N, where T is the sampling period and t0 is the initial 
moment. If the value X(t0) of the initial state and the sequence 
of control inputs U(t0), U(t1), …, U(tN-1) are known, then the 
sequence of state variables X(t1),…, X(tN-1), X(tN) and the 
sequence of controlled (output) variables Y(t1),…, Y(tN-1), 
Y(tN) can be calculated using a process model. In this work, 
we consider that the process model is a set of differential 
algebraic equations. 

Let Π be the structure of the OCP defined as 

 Π =<f, constraints, t0, N, X(t0), J(t0, N, X(t0))>, (1) 

where f is the function appearing in the state equation 

 dX/dt =f(X(t), Y(t),U(t),…,t) (2) 

J(t0, N, X(t0)) is the objective function, and "constraints" is 
the set of all algebraic and differential constraints imposed by 
the dynamic environment. To solve Π means finding the 
control sequence that optimizes (maximizes or minimizes) the 
objective function J(.) on the control horizon, starting from the 
initial state X(t0). 

For different reasons, especially when a deterministic 
algorithm is not known, we may decide to solve this problem 
using an approaching algorithm based on a metaheuristic, 
such as Genetic Algorithm, Particle Swarm Optimization, Ant 
Colony Systems, Simulated Annealing, etc. The main reason 
is the ability of such algorithms to cope with the high 
complexity of Π. 

Let U be an optimal solution of the considered OCP that 
DASA algorithm will try to find out. It can be coded as a 
vector  

 U = [U1, U2, …, UN] 

that corresponds to the N sampling periods of the control 
horizon. 

The basic elements of DASA, as described in [3], are 
reviewed hereafter and adapted to PCO. DASA uses a single 
current solution U′ that is improved along the iterations based 
on the difference vectors proposed by ants. Let n_ants be the 
number of ants. At each iteration, each ant proposes a control 
sequence  

 m
m UU ∆⋅+= ω' ; m=1,…, n_ants (3) 

DASA uses a fine-grained discrete form of the search step. 
The vector used to update the current control sequence is

T
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The values di are calculated based on the maximum and 
minimum values (Ui and Li) of the admissible control inputs. 
A search graph G = (V, E) is created, where V is the set of 
nodes and E is the set of edges, using the elements of the sets 
Δi , 1≤ i ≤ N, according to Fig.1. Each set i∆  from (4) is 
represented by a set of nodes,  

 Vi= {vi,1, vi,2, …, vi,2di+1}; nVVVV ∪∪= L21  

In this way, a direct mapping is defined between the 
discrete values of the search steps and the nodes. 

The search graph is fully connected, i.e. each node in the 
Vi set is connected to all the nodes belonging to the Vi+1 set. 
We have an oriented graph in which any path p from the start 
node to any node belonging to VN has the same length N. We 
shall represent such a path as a sequence of nodes: 

 p= (v1,v2,…,vN) with  vi ϵ Vi, Ni ≤≤1   

DASA associates to each set Vi a Cauchy probability 
distribution that models the pheromone. In Fig.1a, the path in 
blue corresponds to a possible sampling of the Cauchy 
distributions given in Fig.1b. 

The pseudocode description of the implemented version of 
DASA is presented in Fig. 2. The DASA iteratively improves 
the current control sequence Ucurrent by applying (3). In lines 
1-2 an initial solution is generated based on available 
information. The call Graph_initialization(ε) generates the 
search graph based on the desired precision ε (the minimum 
value which can modify a control input) and the dimension of 
the search space. The call Pheromone_initialization(G) 
associates an initial amount of pheromone to each sets Vi 
whose value corresponds to a standard Cauchy distribution 
with probability density  

Fig.1. (a) Ant’s search graph for an OCP  
(b) Example of pheromone distribution over vertices based on Cauchy 

distributions sampling 

586



 ( )( )[ ]2/11)( slxsxC −+⋅= π , (5) 

where l is the local offset with initial values l0=0, s is the scale 
factor, s= sglobal–slocal with initial values sglobal,0=1, slocal,0=0. 
The nodes are equidistantly arranged between 
 x = [-4,4]. 

Until a stop criterion is met, the ants construct in parallel 
n_ants paths (lines 9-18). The call Find_path(G) is made by 
each ant. Each ant begins from the start node (Fig. 1a) and 
adds to its partial path a node in accordance with the 
probabilistic rule specific to ACO. The ant #m at time i moves 
from the node vi-1,m ∈Vi-1, to a node vi,j ∈ Vi with the 
probability 

 ∑ +≤≤
=

1*21 ,,, )()(),(
idk kijijimP vvv ττ , 

where τ(vi,j) is the pheromone of node j from Vi, given by 
sampling (5). In pheromone implementation just s and l are 
memorized for each set Vi. The ants sample a node vi,j by using 
the inverse of cumulative distribution function(the quantile) of 
the Cauchy distribution (see [3]). If the search is trapped in a 
local optimum and the pheromone directs the ants to construct 
null difference paths( cycle lines 11-18), then the search is 
restarted from a new initial solution (line 15) and the 
pheromone is also reset (line 16). 

After each ant constructed its path, new control sequences 
are computed based on these paths (lines 19-20). The quality 
of the new solutions is evaluated. Let M be the best ant of the 
current iteration (lines 21-25). If it improves the current 
solution Ucurrent then this one will be replaced (lines 26-27). 
The call Scale_update(sglobal, slocal) increases sglobal according 
to s+,  the global scale-increasing factor, and slocal is set to half 
of sglobal (line 28). The call Pheromon_redistribution(pM) 
updates the offsets' location of the Cauchy distribution 
according to the path pM (line 29). Furthermore if the new 
Ucurrent sequence control improves the global best solution, 
Ubest, then this one will be replaced (lines 30-31). If no 
improvement is found then the call Scale_update(sglobal) 
decreases sglobal according to s-, the global scale-decreasing 
factor, (line 33) and the pheromone is evaporated by moving 
the offset location l towards 0 (line 34). When the 
stop_criterion is met, the best found solution is returned (line 
36-37). [2] details on how sglobal and slocal balance between 
exploration and exploitation in DASA. 

III. EXAMPLE OF USING DASA FOR SOLVING AN OCP 

In this section it is considered an OCP taken from [6], 
where it is solved using the simulated annealing algorithm. 
The optimization problem is to maximize an intermediate 
product after a fixed reaction time. The reaction model 
involves a component A that is consumed by chemical 
reaction producing the product B. At high temperatures, B 
further reacts to the undesired by-product C: 

 CBA
kk 21

2 →→  

The reaction rate is a function of temperature and 
concentration. The objective is to maximize cB(tf ) the 

concentration of component B at the end of the optimization 
time horizon tf of 1 h, i.e. t = [0,3600]: 

The Batch Reactor continuous model is based on the 
Arrhenius approach and consists in three differential 
equations 

2/
0,1

1
A

RTEA cek
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dc −⋅−=  

B
RTE
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0,2
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21 −− ⋅−⋅=  

C
RTE
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0,2
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0,2

22 −− ⋅−⋅=  

cj , are the concentrations of components j=A, B, C expressed 

in (mol mol-1), 11
0,1  4000 −−= smolk  and 

15
0,2  102.6 −×= sk  are the rate coefficient constants, 

cal/mol 50001 =E  and molcal/   100002 =E  are the 
activation energies, R=1.98721 cal mol-1K-1 is the universal 
gas constant and T is the temperature in (K). T is chosen as the 
control variable and the concentrations cA, cB, cC  are the state 
variables. At the beginning the reactor is filled with 
component A, giving the following initial conditions: 

1)( 0 =tcA ; 0)( 0 =tcB ; 0)( 0 =tcC . 

The temperature has to meet the bound constraints 

KTK 398298 ≤≤  

The objective function that has to be maximized is  

J(U)= cB(tf ) 

For our problem, the samples of the control variable are the 
values of the control temperature: 

Ui=Ti ,  i=1,…,N 

Generally speaking, the sampling period is determined 
considering control engineering aspects. Because the control 
horizon is already set, the value of N used in coding the control 
variable is implicitly determined. In our implementation we 
considered N=50, that corresponds to a sampling period of 72 
s. The implementation of DASA devoted to solve this OCP 
uses n_ants=10. Other parameters of the algorithm are set as 
follow: b=10, desired precision ε=10-6, s+ = 0.02 (global scale-
increasing factor), s- = 0.01 (global scale-decreasing factor) 

In the case of solving an OCP, the evaluation of the 
objective function for a given control input U involves the 
numerical integration of the dynamic system over the control 
horizon. In our tests we used MATLAB system for 
implementing DASA that has some functions devoted to the 
numerical integration. These functions make also the implicit 
discretization of the process model. In the first tests, the stop 
criterion was a maximum number if iterations equal to 500. 
The results obtained after a typical run - an execution is a 
random process - are illustrated in Fig. 3 and 4. 
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1.  Ucurrent =Initial_solution() 
2.  Ubest= Ucurrent 
3.  G = Graph_initialization(ε) 
4.  Pheromone_initialization(G)  

5.  iter=0; 

6.  repeat  

7.   iter = iter +1 

8.   k = 0 

9.   for m=1,…,n_ants 

10.    pm= 0 

11.    repeat 

12.     pm = Find_path(G) 

13.     k = k+1 

14.     if k≥N then 

15.    Ucurrent=Initial_solution() 
16.    Pheromone_initialization(G) 

17.      Restart() 

18.    until pm ≠ 0 ■ 

19.   ω=Random(1,b-1) 

20.   Um = Ucurrent + ω*δ(pm) 
21.   Jbest_of_iter=inf 
22.   for m=1,…,n_ants 

23.    if J(Um) < Jbest_of_iter  then 
24.     Jbest_of_iter = J(Um)   
25.     M=m■ 
26.   if Jbest_of_iter < J( Ucurrent ) then 
27.    Ucurrent = UM 
28.    s= Scale_update(sglobal, slocal) 
29.    Pheromon_redistribution(pM) 

30.    if J(Ubest) < J(Ucurrent) then 
31.     Ubest = Ucurrent 

32.   else  
33.    s = Scale_update(sglobal) 
34.    Pheromone_evaporation(G,ρ) ■ 

35.  until stop_criterion ■  

36.  Jbest = J(Ubest) 
37.  return Ubest, Jbest  

Fig. 2. Differential ant-stigmergy algorithm 

The iterative process begins with an initial solution 
Uinit.The best solution, Ubest, depicted in Fig. 3 generates the 
state variables evolution presented in Fig. 4. Let's note that the 
maximum value for J found out using DASA is 0.61067 that 
corresponds to the optimum known from [6]. 

IV. IMPROVING THE COMPUTATIONAL COMPLEXITY 

In the case of solving an OCP, the evaluation of the 
objective function J for a given control input U has an 
important computational complexity, because it involves the 
numerical integration of the dynamic system over the control 
horizon. That is way the computational complexity of DASA 
may be estimated starting from the number of evaluations of 
J(U). If the number of iterations until the run stops is denoted 
by Iter, the total number of evaluations is Iter·n_ants. Hence, 
Iter has to be as small as possible. 

 
Fig. 3. The best solution found out in a typical run of DASA 

 
Fig. 4. State variables evolution with the best solution 

In the implemented version, the DASA algorithm stops the 
iterative procedure as early as possible, in other words when 
the convergence is apprehended. For this purpose, a constant 
value is predefined: the number of iterations without 
improvement of J denoted by no_imp. If the algorithm already 
evolved along at list n_min iterations (iter > n_min) and the 
best solution has not been improved in the last no_imp 
iterations, one may consider that the algorithm has converged. 
For example, we used n_min=200 and no_imp=10. 

On the other side, the complexity of the numerical integration 
of the dynamic system is obviously directly proportional to N. 
If we denote by C(N) the complexity of the dynamic system's 
integration, then the computational complexity of DASA may 
be approximated by  

 Iter·n_ants·C(N).  

Obviously, it holds 

 N1<N2 ⇒ C(N1) < C(N2).  

As a characteristic of OCPs, the control horizon is the 
given data of the problem, while N is a derived parameter that 
takes into consideration the sampling period. Let's consider 
DASA(N, X(t0), Uinit) as the call of a procedure with 3 
parameters, where X(t0) is the vector of the initial state values 
and Uinit is the initial solution used in the iterative process. 
Let's also suppose that DASA(Ni, X(t0), Uinit) starts  
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Fig. 5. Improving the complexity of DASA 

from the same initial solution and converges after Iteri 

iterations to the best solution i
bestU  and the best value of the 

objective function 

 i
bestJ =J( i

bestU ), i=1 or 2 . 

At the first sight, we would be interested to choose a lower 
value for N. Our tests executed with N1<N2 come to the 
conclusion that: 

- Iter1 < Iter2, on condition that N1 ensures the convergence; 

- 1
bestJ  is relatively close to the optimal value that is 

practically 2
bestJ . 

Remark 2: 1
bestU  may be a very good initial solution for a 

new iterative process produced by DASA(N2, X(t0), 1
bestU ) 

with a greater number of sampling periods as illustrated in Fig. 
5. Our expectation is to find out the same performance index(

2
bestJ ) in a number of iterations smaller than Iter2-Iter1. 

Because the numerical tests confirmed this hypothesis, we 
propose hereafter a technique that can reduce the 
computational complexity of DASA in the context of a given 
OCP: 

 

DASA(N1, X(t0), Uinit) 1. 

N2←k·N1 2. 

( )12 expand bestinit UU ← ; 
3. 

( )2
2  ),( ,DASA inito UtXN ; 

4. 

2*
bestUU ← ; 

5. 

)( **
UJJ ← ; 

6. 

Fig. 6. Complexity improving technique  

In Fig. 6, the step 3 makes an adjustment of the length of 

control input. Because the length of 1
bestU  is N1, each element 

of this vector will be replicated k times as in the outline below: 

 [U1
best(1)… U1

best(1)……U1
best(N1)… U1

best(N1)]. 

Let's recall that the control horizon is the same for the two 
iterative processes from steps 1 and 4. Finally the optimal 
solution U* and the performance index J* are set by the second 
iterative process. 

TABLE I.  RESULTS OF DASA FOR N=50 

Trial Iter Jbest 

1 437 0,610641 

2 552 0,610667 

3 524 0,610631 

4 477 0,610660 

5 459 0,610653 

6 472 0,610651 

7 390 0,610529 

8 447 0,610649 

9 528 0,610648 

10 481 0,610671 

11 508 0,610646 

12 383 0,610620 

13 492 0,610649 

14 539 0,610665 

15 550 0,610666 

Mean 483 0,610643 

V. SIMULATION RESULTS 

Simulation is an effective way to verify that DASA is 
appropriate for solving the given OCP (good solutions are 
obtained), it has good convergence and its computational 
complexity can justify the possibility of using it in a closed-
loop structure (see Remark 1). 

In a first group of tests, DASA was executed 15 times with 
an initial solution Uinit and has generated the results shown in 
TABLE I. For each iterative process the column Iter gives the 
number of iterations until convergence and the column Jbest 
indicates the best performance index. The computational 
complexity may be approximated by the value 

 Iter·n_ants·C(N)=4830·C(50). (6) 

This means that the evaluation of objective function – 
which involves a numerical integration procedure with 50 
sampling periods – is called 4830 times. 

In order to apply the proposed technique reducing the 
complexity, the algorithm presented in Fig. 6 was executed 15 
times for N1=25 and N2=50. It is important to notice that the 
initial solution is basically the same as that one used in the first 
group of tests. Because in the first execution of DASA the 
number of samplings is 25, the initial solution was set to 
[Uinit(1), Uinit(3),…, Uinit(49)].  

The results are shown in TABLE II where the columns 
Iter1 and Iter2 give the number of iterations until convergence 
for the two calls of DASA and the columns J1 and J2 indicate 
the best performance index. 

The results confirm our expectation. On average, the 
computational complexity may be considered as being 

 Iter1·10·C(25)+ Iter2·10·C(50). (7) 

Because of (12), the complexity is smaller than 

 (Iter1+ Iter2) ·  10·C(50)=4070·C(50) (8) 

U2
best 

Uinit 
N1 

N2 

Iter1 N2 
U1

best 

Iter2 
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Comparing (6) and (8), it can be stated that the proposed 
technique has diminished the computational complexity. In 
TABLE III, the results of our technique with k=5 are 
presented. The complexity is not better than in TABLE II 
because the best solution U1

best is farther from the optimal 
solution and the initial coding of the control variable is too 
rough, but is better that in TABLE I.  

VI. CONCLUSION 

This paper proposes to solve a given Optimal Control 
Problem using the Differential Ant-Stigmergy Algorithm. 
This is a metaheuristic that searches a good solution evolving 
from a single initial solution. A very important particularity of 
an OCP is that the evaluation of the objective function for 

TABLE II.  TECHNIQUE IN TWO STEPS WITH N1=25, N2=50 

Trial Iter1 J1 Itet2 J2 Iter1+ Iter2 

1 251 0.610496 137 0.610695 388 

2 296 0.610491 132 0.610686 428 

3 299 0.610521 122 0.610697 421 

4 298 0.610516 160 0.610708 458 

5 305 0.610528 128 0.610705 433 

6 257 0.610494 101 0.610688 358 

7 254 0.610505 101 0.61069 355 

8 333 0.610503 128 0.610696 461 

9 327 0.610515 115 0.610704 442 

10 277 0.610499 111 0.610688 388 

11 236 0.61051 118 0.610698 354 

12 349 0.61053 102 0.610707 451 

13 314 0.610512 110 0.610692 424 

14 294 0.61048 121 0.610686 415 

15 229 0.61045 110 0.610677 339 

Mean 287 0.610503 119 0.610694 407 

TABLE III.  TECHNIQUE IN TWO STEPS WITH N1=10, N2=50 

Trial I1 J1 I2 J2 I1+ I2 

1 247 0.610478 117 0.610697 364 

2 264 0.610499 140 0.6107 404 

3 292 0.610518 131 0.610697 423 

4 289 0.610482 102 0.610696 391 

5 263 0.610517 105 0.61069 368 

6 235 0.610487 134 0.610697 369 

7 264 0.610498 153 0.6107 417 

8 218 0.610485 110 0.610679 328 

9 266 0.610488 111 0.61069 377 

10 310 0.610521 126 0.610665 436 

11 280 0.610499 520 0.610712 800 

12 237 0.610466 114 0.610693 351 

13 266 0.610491 157 0.6107 423 

14 238 0.610478 121 0.610679 359 

15 327 0.610509 140 0.610703 467 

Mean 266 0.610494 152 0.610693 418 

a given control input has a substantial computational 
complexity, because it needs a numerical integration of the 
dynamic system over the control horizon (even if the problem 
has a Mayer type objective function, like in our example). This 
characteristic involves an important computational 
complexity. 

Other characteristic of an OCP is that the control horizon 
is a given data. On the other hand the sampling period is 
chosen taking into account considerations related to control 
engineering. In this way the number N used to encode the 
control input variable is derived. But a big value for N involves 
a big or unacceptable complexity of DASA. That is why we 
have proposed a technique in two phases able to decrease the 
complexity. In the first phase, DASA find out a good solution 
in a small number of iteration by adopting a rough coding of 
the control input. The second phase is a kind of zoom of the 
search space around this solution, which becomes initial 
solution, with a finer coding of the control input. In this way 
DASA will converge relatively fast to the optimal solution. 

Nevertheless, the value of N1 has to be enough large in 
order to ensure the convergence to a good solution that would 
be sufficiently close to the optimum solution. 

For the OCP treated as example in this paper and whose 
solution is known from a previous paper, the tests proved that 
the technique proposed to reduce the complexity turned out to 
be efficient. 
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