
Differential Ant-Stigmergy Algorithm for Optimal
Control Problems

Adrian SERBENCU
Department of Automation and Electrical Engineering,

“Dunarea de Jos” University of Galati, Galati ,Romania

adrian.serbencu@ugal.ro

Viorel MINZU
Department of Automation and Electrical Engineering,

“Dunarea de Jos” University of Galati, Galati ,Romania

viorel.minzu@ugal.ro

Abstract— The objective of this paper is to show how the

Differential Ant-Stigmergy Algorithm (DASA) can be used to

solve an Optimal Control Problem (OCP). A version of this

algorithm devoted to search a good solution for an OCP is

presented. Because this kind of problems has usually a large

computational complexity, a technique to reduce it is presented.

This one exploits a particularity of DASA related to the coding

of the problem's solution. In the first phase, DASA find out a

good solution in a small number of iteration by adopting a rough

coding of the control input. The second phase is a kind of zoom

of the search space around this solution, which becomes initial

solution, with a finer coding of the control input.

Keywords— optimal control problem, metaheuristic, Ant

Colony Optimization

I. INTRODUCTION

Many papers have treated metaheuristics in order to solve
optimization problems. Ant Colony Optimization algorithm
was created for solving a combinatorial optimization problem
that can be modeled as an optimal path in a graph [1]. Because
ACO has proved to be an efficient algorithm, it is a challenge
for many authors to adapt this algorithm to continuous
optimization problems. The key aspect on this subject is how
to model the depositation of the pheromone by the artificial
ants. Differential Ant Stigmergy Algorithm (DASA) [2] has
turned out to be a success adaptation of ACO to continuous
problems. This algorithm takes a solution of the problem and
modifies the values of its components using some variations
(offsets) in order to create another solution. The offsets belong
to a discretized domain. The paradigm of solutions
construction using a path in a graph and updating the
pheromone distribution acquired an efficient extension.
DASA was successfully applied to solve benchmark problems
[2] and diverse engineering applications [3]. Improvements of
DASA's feats through an elitist strategy have been proposed
and analyzed in [4] and [5]

Among the optimization problems there is a special
category: the optimal control problems. Metaheuristic
algorithms have already been developed in order to solve an
optimal control problem (OCP) concerning a dynamic
environment. An optimal solution is a sequence of values for
the control variables, covering the control horizon that
optimizes a performance index. The first metaheuristics used

to solve OCPs have been the Simulated Annealing, Genetic
Algorithms and Evolutionary Programming [6], [7]. [8].
Particle Swarm Optimization has been also used by the
authors in this context either in its continuous formulation [9],
or in its discrete version [10]. In the book [11], besides many
engineering problems, applications solving OCP that are using
metaheuristic algorithms are presented and analyzed.

This paper presents DASA and gives a description that is
devoted to optimal control. Because OCPs have usually a
large computational complexity, a method to decrease it is
proposed. This one consists in a technique in two phases that
can globally reduce the number of iterations until finding the
optimal solution and implicitly the number of objective
function evaluations.

Remark 1: DASA yields an offline "optimal" solution, which
is a sequence of values for the control variables, covering the
control horizon. This control sequence may only be used
within an open-loop control structure. This is a possible but
unusual situation (for known reasons). Firstly, the
implementer has to verify that DASA yields good solutions,
has good convergence and its computational complexity can
justify the possibility of using it in a closed-loop structure. The
goal of this paper is only to give to the reader a tool to make
this analysis. If DASA passes these tests, further work has to
be done by the implementer, in order to design the controller
and integrate it in a closed loop structure. An effective
approach is presented in [12] using Model Predictive Control.

The section II describes minimally an OCP and DASA in
order to fix the scientific framework. The lecturer will find
more details in [3]. The way of coding the control input is
emphasized. The description of DASA is adapted to an OCP
solving. An example of using DASA to solve an OCP is given
in section III, where the concentration of a component in a
Batch Reactor has to be maximized. In section IV, an
evaluation of the computational complexity is presented in
connection with the number of iterations until the convergence
is apprehended. In this context, a technique that can reduce the
computational complexity of DASA is proposed. A number of
tests with MATLAB system are carried out and their results
are described in section V. These results proved that the
technique proposed to reduce the complexity turned out to be
efficient. Some conclusions are drawn in section VI.

2018 22nd International Conference on System Theory, Control and Computing (ICSTCC)

978-1-5386-4444-7/18/$31.00 ©2018 IEEE 585

II. DASA FOR OPTIMAL CONTROL PROBLEMS

A given OCP considers the environment evolution on a
control horizon [t0, tN], with discrete moments ti=t0+i·T,
i=0,…, N, where T is the sampling period and t0 is the initial
moment. If the value X(t0) of the initial state and the sequence
of control inputs U(t0), U(t1), …, U(tN-1) are known, then the
sequence of state variables X(t1),…, X(tN-1), X(tN) and the
sequence of controlled (output) variables Y(t1),…, Y(tN-1),
Y(tN) can be calculated using a process model. In this work,
we consider that the process model is a set of differential
algebraic equations.

Let Π be the structure of the OCP defined as

 Π =<f, constraints, t0, N, X(t0), J(t0, N, X(t0))>, (1)

where f is the function appearing in the state equation

 dX/dt =f(X(t), Y(t),U(t),…,t) (2)

J(t0, N, X(t0)) is the objective function, and "constraints" is
the set of all algebraic and differential constraints imposed by
the dynamic environment. To solve Π means finding the
control sequence that optimizes (maximizes or minimizes) the
objective function J(.) on the control horizon, starting from the
initial state X(t0).

For different reasons, especially when a deterministic
algorithm is not known, we may decide to solve this problem
using an approaching algorithm based on a metaheuristic,
such as Genetic Algorithm, Particle Swarm Optimization, Ant
Colony Systems, Simulated Annealing, etc. The main reason
is the ability of such algorithms to cope with the high
complexity of Π.

Let U be an optimal solution of the considered OCP that
DASA algorithm will try to find out. It can be coded as a
vector

 U = [U1, U2, …, UN]

that corresponds to the N sampling periods of the control
horizon.

The basic elements of DASA, as described in [3], are
reviewed hereafter and adapted to PCO. DASA uses a single
current solution U′ that is improved along the iterations based
on the difference vectors proposed by ants. Let n_ants be the
number of ants. At each iteration, each ant proposes a control
sequence

 m
m UU ∆⋅+= ω' ; m=1,…, n_ants (3)

DASA uses a fine-grained discrete form of the search step.
The vector used to update the current control sequence is

T

Ni

m],...,,...,,[21 δδδδ=∆ . Each element iδ has the form

δi= bx with x∈Z and b is a discrete base. ω is a weighting
factor randomly chosen as an integer number having values
between 1 and b-1. Therefore iδ is an element of the set Δi of
positive and negative differences that can be applied to the
command Ui :

},...,2,1,|{0

},...,2,1,|{
1

,,

1
,,

i

Lk

kiki

i

Lk

kikii

dkb

dkb

i

i

=+=∪∪

∪=−==∆
−+++

−+−−

δδ

δδ
. (4)

The values di are calculated based on the maximum and
minimum values (Ui and Li) of the admissible control inputs.
A search graph G = (V, E) is created, where V is the set of
nodes and E is the set of edges, using the elements of the sets
Δi , 1≤ i ≤ N, according to Fig.1. Each set i∆ from (4) is
represented by a set of nodes,

 Vi= {vi,1, vi,2, …, vi,2di+1}; nVVVV ∪∪= L21

In this way, a direct mapping is defined between the
discrete values of the search steps and the nodes.

The search graph is fully connected, i.e. each node in the
Vi set is connected to all the nodes belonging to the Vi+1 set.
We have an oriented graph in which any path p from the start
node to any node belonging to VN has the same length N. We
shall represent such a path as a sequence of nodes:

 p= (v1,v2,…,vN) with vi ϵ Vi, Ni ≤≤1

DASA associates to each set Vi a Cauchy probability
distribution that models the pheromone. In Fig.1a, the path in
blue corresponds to a possible sampling of the Cauchy
distributions given in Fig.1b.

The pseudocode description of the implemented version of
DASA is presented in Fig. 2. The DASA iteratively improves
the current control sequence Ucurrent by applying (3). In lines
1-2 an initial solution is generated based on available
information. The call Graph_initialization(ε) generates the
search graph based on the desired precision ε (the minimum
value which can modify a control input) and the dimension of
the search space. The call Pheromone_initialization(G)
associates an initial amount of pheromone to each sets Vi
whose value corresponds to a standard Cauchy distribution
with probability density

Fig.1. (a) Ant’s search graph for an OCP
(b) Example of pheromone distribution over vertices based on Cauchy

distributions sampling

586

 ()()[]2/11)(slxsxC −+⋅= π , (5)

where l is the local offset with initial values l0=0, s is the scale
factor, s= sglobal–slocal with initial values sglobal,0=1, slocal,0=0.
The nodes are equidistantly arranged between
 x = [-4,4].

Until a stop criterion is met, the ants construct in parallel
n_ants paths (lines 9-18). The call Find_path(G) is made by
each ant. Each ant begins from the start node (Fig. 1a) and
adds to its partial path a node in accordance with the
probabilistic rule specific to ACO. The ant #m at time i moves
from the node vi-1,m ∈Vi-1, to a node vi,j ∈ Vi with the
probability

 ∑ +≤≤
=

1*21 ,,,)()(),(
idk kijijimP vvv ττ ,

where τ(vi,j) is the pheromone of node j from Vi, given by
sampling (5). In pheromone implementation just s and l are
memorized for each set Vi. The ants sample a node vi,j by using
the inverse of cumulative distribution function(the quantile) of
the Cauchy distribution (see [3]). If the search is trapped in a
local optimum and the pheromone directs the ants to construct
null difference paths(cycle lines 11-18), then the search is
restarted from a new initial solution (line 15) and the
pheromone is also reset (line 16).

After each ant constructed its path, new control sequences
are computed based on these paths (lines 19-20). The quality
of the new solutions is evaluated. Let M be the best ant of the
current iteration (lines 21-25). If it improves the current
solution Ucurrent then this one will be replaced (lines 26-27).
The call Scale_update(sglobal, slocal) increases sglobal according
to s+, the global scale-increasing factor, and slocal is set to half
of sglobal (line 28). The call Pheromon_redistribution(pM)
updates the offsets' location of the Cauchy distribution
according to the path pM (line 29). Furthermore if the new
Ucurrent sequence control improves the global best solution,
Ubest, then this one will be replaced (lines 30-31). If no
improvement is found then the call Scale_update(sglobal)
decreases sglobal according to s-, the global scale-decreasing
factor, (line 33) and the pheromone is evaporated by moving
the offset location l towards 0 (line 34). When the
stop_criterion is met, the best found solution is returned (line
36-37). [2] details on how sglobal and slocal balance between
exploration and exploitation in DASA.

III. EXAMPLE OF USING DASA FOR SOLVING AN OCP

In this section it is considered an OCP taken from [6],
where it is solved using the simulated annealing algorithm.
The optimization problem is to maximize an intermediate
product after a fixed reaction time. The reaction model
involves a component A that is consumed by chemical
reaction producing the product B. At high temperatures, B
further reacts to the undesired by-product C:

 CBA
kk 21

2 →→

The reaction rate is a function of temperature and
concentration. The objective is to maximize cB(tf) the

concentration of component B at the end of the optimization
time horizon tf of 1 h, i.e. t = [0,3600]:

The Batch Reactor continuous model is based on the
Arrhenius approach and consists in three differential
equations

2/
0,1

1
A

RTEA cek
dt

dc −⋅−=

B
RTE

A
RTEB cekcek

dt

dc /
0,2

2/
0,1

21 −− ⋅−⋅=

C
RTE

B
RTEC cekcek

dt

dc /
0,2

2/
0,2

22 −− ⋅−⋅=

cj , are the concentrations of components j=A, B, C expressed

in (mol mol-1), 11
0,1 4000 −−= smolk and

15
0,2 102.6 −×= sk are the rate coefficient constants,

cal/mol 50001 =E and molcal/ 100002 =E are the
activation energies, R=1.98721 cal mol-1K-1 is the universal
gas constant and T is the temperature in (K). T is chosen as the
control variable and the concentrations cA, cB, cC are the state
variables. At the beginning the reactor is filled with
component A, giving the following initial conditions:

1)(0 =tcA ; 0)(0 =tcB ; 0)(0 =tcC .

The temperature has to meet the bound constraints

KTK 398298 ≤≤

The objective function that has to be maximized is

J(U)= cB(tf)

For our problem, the samples of the control variable are the
values of the control temperature:

Ui=Ti , i=1,…,N

Generally speaking, the sampling period is determined
considering control engineering aspects. Because the control
horizon is already set, the value of N used in coding the control
variable is implicitly determined. In our implementation we
considered N=50, that corresponds to a sampling period of 72
s. The implementation of DASA devoted to solve this OCP
uses n_ants=10. Other parameters of the algorithm are set as
follow: b=10, desired precision ε=10-6, s+ = 0.02 (global scale-
increasing factor), s- = 0.01 (global scale-decreasing factor)

In the case of solving an OCP, the evaluation of the
objective function for a given control input U involves the
numerical integration of the dynamic system over the control
horizon. In our tests we used MATLAB system for
implementing DASA that has some functions devoted to the
numerical integration. These functions make also the implicit
discretization of the process model. In the first tests, the stop
criterion was a maximum number if iterations equal to 500.
The results obtained after a typical run - an execution is a
random process - are illustrated in Fig. 3 and 4.

587

1. Ucurrent =Initial_solution()
2. Ubest= Ucurrent
3. G = Graph_initialization(ε)
4. Pheromone_initialization(G)

5. iter=0;

6. repeat

7. iter = iter +1

8. k = 0

9. for m=1,…,n_ants

10. pm= 0

11. repeat

12. pm = Find_path(G)

13. k = k+1

14. if k≥N then

15. Ucurrent=Initial_solution()
16. Pheromone_initialization(G)

17. Restart()

18. until pm ≠ 0 ■

19. ω=Random(1,b-1)

20. Um = Ucurrent + ω*δ(pm)
21. Jbest_of_iter=inf
22. for m=1,…,n_ants

23. if J(Um) < Jbest_of_iter then
24. Jbest_of_iter = J(Um)
25. M=m■
26. if Jbest_of_iter < J(Ucurrent) then
27. Ucurrent = UM
28. s= Scale_update(sglobal, slocal)
29. Pheromon_redistribution(pM)

30. if J(Ubest) < J(Ucurrent) then
31. Ubest = Ucurrent

32. else
33. s = Scale_update(sglobal)
34. Pheromone_evaporation(G,ρ) ■

35. until stop_criterion ■

36. Jbest = J(Ubest)
37. return Ubest, Jbest

Fig. 2. Differential ant-stigmergy algorithm

The iterative process begins with an initial solution
Uinit.The best solution, Ubest, depicted in Fig. 3 generates the
state variables evolution presented in Fig. 4. Let's note that the
maximum value for J found out using DASA is 0.61067 that
corresponds to the optimum known from [6].

IV. IMPROVING THE COMPUTATIONAL COMPLEXITY

In the case of solving an OCP, the evaluation of the
objective function J for a given control input U has an
important computational complexity, because it involves the
numerical integration of the dynamic system over the control
horizon. That is way the computational complexity of DASA
may be estimated starting from the number of evaluations of
J(U). If the number of iterations until the run stops is denoted
by Iter, the total number of evaluations is Iter·n_ants. Hence,
Iter has to be as small as possible.

Fig. 3. The best solution found out in a typical run of DASA

Fig. 4. State variables evolution with the best solution

In the implemented version, the DASA algorithm stops the
iterative procedure as early as possible, in other words when
the convergence is apprehended. For this purpose, a constant
value is predefined: the number of iterations without
improvement of J denoted by no_imp. If the algorithm already
evolved along at list n_min iterations (iter > n_min) and the
best solution has not been improved in the last no_imp
iterations, one may consider that the algorithm has converged.
For example, we used n_min=200 and no_imp=10.

On the other side, the complexity of the numerical integration
of the dynamic system is obviously directly proportional to N.
If we denote by C(N) the complexity of the dynamic system's
integration, then the computational complexity of DASA may
be approximated by

 Iter·n_ants·C(N).

Obviously, it holds

 N1<N2 ⇒ C(N1) < C(N2).

As a characteristic of OCPs, the control horizon is the
given data of the problem, while N is a derived parameter that
takes into consideration the sampling period. Let's consider
DASA(N, X(t0), Uinit) as the call of a procedure with 3
parameters, where X(t0) is the vector of the initial state values
and Uinit is the initial solution used in the iterative process.
Let's also suppose that DASA(Ni, X(t0), Uinit) starts

588

Fig. 5. Improving the complexity of DASA

from the same initial solution and converges after Iteri

iterations to the best solution i
bestU and the best value of the

objective function

 i
bestJ =J(i

bestU), i=1 or 2 .

At the first sight, we would be interested to choose a lower
value for N. Our tests executed with N1<N2 come to the
conclusion that:

- Iter1 < Iter2, on condition that N1 ensures the convergence;

- 1
bestJ is relatively close to the optimal value that is

practically 2
bestJ .

Remark 2: 1
bestU may be a very good initial solution for a

new iterative process produced by DASA(N2, X(t0), 1
bestU)

with a greater number of sampling periods as illustrated in Fig.
5. Our expectation is to find out the same performance index(

2
bestJ) in a number of iterations smaller than Iter2-Iter1.

Because the numerical tests confirmed this hypothesis, we
propose hereafter a technique that can reduce the
computational complexity of DASA in the context of a given
OCP:

DASA(N1, X(t0), Uinit) 1.

N2←k·N1 2.

()12 expand bestinit UU ← ;
3.

()2
2),(,DASA inito UtXN ;

4.

2*
bestUU ← ;

5.

)(**
UJJ ← ;

6.

Fig. 6. Complexity improving technique

In Fig. 6, the step 3 makes an adjustment of the length of

control input. Because the length of 1
bestU is N1, each element

of this vector will be replicated k times as in the outline below:

 [U1
best(1)… U1

best(1)……U1
best(N1)… U1

best(N1)].

Let's recall that the control horizon is the same for the two
iterative processes from steps 1 and 4. Finally the optimal
solution U* and the performance index J* are set by the second
iterative process.

TABLE I. RESULTS OF DASA FOR N=50

Trial Iter Jbest

1 437 0,610641

2 552 0,610667

3 524 0,610631

4 477 0,610660

5 459 0,610653

6 472 0,610651

7 390 0,610529

8 447 0,610649

9 528 0,610648

10 481 0,610671

11 508 0,610646

12 383 0,610620

13 492 0,610649

14 539 0,610665

15 550 0,610666

Mean 483 0,610643

V. SIMULATION RESULTS

Simulation is an effective way to verify that DASA is
appropriate for solving the given OCP (good solutions are
obtained), it has good convergence and its computational
complexity can justify the possibility of using it in a closed-
loop structure (see Remark 1).

In a first group of tests, DASA was executed 15 times with
an initial solution Uinit and has generated the results shown in
TABLE I. For each iterative process the column Iter gives the
number of iterations until convergence and the column Jbest
indicates the best performance index. The computational
complexity may be approximated by the value

 Iter·n_ants·C(N)=4830·C(50). (6)

This means that the evaluation of objective function –
which involves a numerical integration procedure with 50
sampling periods – is called 4830 times.

In order to apply the proposed technique reducing the
complexity, the algorithm presented in Fig. 6 was executed 15
times for N1=25 and N2=50. It is important to notice that the
initial solution is basically the same as that one used in the first
group of tests. Because in the first execution of DASA the
number of samplings is 25, the initial solution was set to
[Uinit(1), Uinit(3),…, Uinit(49)].

The results are shown in TABLE II where the columns
Iter1 and Iter2 give the number of iterations until convergence
for the two calls of DASA and the columns J1 and J2 indicate
the best performance index.

The results confirm our expectation. On average, the
computational complexity may be considered as being

 Iter1·10·C(25)+ Iter2·10·C(50). (7)

Because of (12), the complexity is smaller than

 (Iter1+ Iter2) · 10·C(50)=4070·C(50) (8)

U2
best

Uinit
N1

N2

Iter1 N2
U1

best

Iter2

589

Comparing (6) and (8), it can be stated that the proposed
technique has diminished the computational complexity. In
TABLE III, the results of our technique with k=5 are
presented. The complexity is not better than in TABLE II
because the best solution U1

best is farther from the optimal
solution and the initial coding of the control variable is too
rough, but is better that in TABLE I.

VI. CONCLUSION

This paper proposes to solve a given Optimal Control
Problem using the Differential Ant-Stigmergy Algorithm.
This is a metaheuristic that searches a good solution evolving
from a single initial solution. A very important particularity of
an OCP is that the evaluation of the objective function for

TABLE II. TECHNIQUE IN TWO STEPS WITH N1=25, N2=50

Trial Iter1 J1 Itet2 J2 Iter1+ Iter2

1 251 0.610496 137 0.610695 388

2 296 0.610491 132 0.610686 428

3 299 0.610521 122 0.610697 421

4 298 0.610516 160 0.610708 458

5 305 0.610528 128 0.610705 433

6 257 0.610494 101 0.610688 358

7 254 0.610505 101 0.61069 355

8 333 0.610503 128 0.610696 461

9 327 0.610515 115 0.610704 442

10 277 0.610499 111 0.610688 388

11 236 0.61051 118 0.610698 354

12 349 0.61053 102 0.610707 451

13 314 0.610512 110 0.610692 424

14 294 0.61048 121 0.610686 415

15 229 0.61045 110 0.610677 339

Mean 287 0.610503 119 0.610694 407

TABLE III. TECHNIQUE IN TWO STEPS WITH N1=10, N2=50

Trial I1 J1 I2 J2 I1+ I2

1 247 0.610478 117 0.610697 364

2 264 0.610499 140 0.6107 404

3 292 0.610518 131 0.610697 423

4 289 0.610482 102 0.610696 391

5 263 0.610517 105 0.61069 368

6 235 0.610487 134 0.610697 369

7 264 0.610498 153 0.6107 417

8 218 0.610485 110 0.610679 328

9 266 0.610488 111 0.61069 377

10 310 0.610521 126 0.610665 436

11 280 0.610499 520 0.610712 800

12 237 0.610466 114 0.610693 351

13 266 0.610491 157 0.6107 423

14 238 0.610478 121 0.610679 359

15 327 0.610509 140 0.610703 467

Mean 266 0.610494 152 0.610693 418

a given control input has a substantial computational
complexity, because it needs a numerical integration of the
dynamic system over the control horizon (even if the problem
has a Mayer type objective function, like in our example). This
characteristic involves an important computational
complexity.

Other characteristic of an OCP is that the control horizon
is a given data. On the other hand the sampling period is
chosen taking into account considerations related to control
engineering. In this way the number N used to encode the
control input variable is derived. But a big value for N involves
a big or unacceptable complexity of DASA. That is why we
have proposed a technique in two phases able to decrease the
complexity. In the first phase, DASA find out a good solution
in a small number of iteration by adopting a rough coding of
the control input. The second phase is a kind of zoom of the
search space around this solution, which becomes initial
solution, with a finer coding of the control input. In this way
DASA will converge relatively fast to the optimal solution.

Nevertheless, the value of N1 has to be enough large in
order to ensure the convergence to a good solution that would
be sufficiently close to the optimum solution.

For the OCP treated as example in this paper and whose
solution is known from a previous paper, the tests proved that
the technique proposed to reduce the complexity turned out to
be efficient.

REFERENCES
[1] M. Dorigo, C.Blum, “Ant colony optimization theory: A survey,”

Theoretical Computer Science, vol. 344, Issues 2-3, November 2005

[2] P. Korošec, J. Šilc, “Using stigmergy to solve numerical optimization
problems,” Computing and Informatics, vol. 27, pp. 377–402, 2008

[3] P. Korošec, J. Šilc, K. Oblak, F. Kosel, “The Differential Ant-
Stigmergy Algorithm: An experimental evaluation and a real-world
application,” Proc. 2007 IEEE CEC, pp. 157-164, 2007

[4] A.E. Şerbencu, V. Mînzu, A. Șerbencu, D. Cernega, “Two elitist
variants of Differential Ant-stigmergy Algorithm,” Proc. 8th ICINCO
vol.1, pp. 136-141, 2011

[5] A.E. Şerbencu, A. Șerbencu,. “A comparison of particle swarm
optimization and differential ant stigmergy algorithm,” Proc. 16th
International Conference on System Theory, Control and Computing
(ICSTCC),IEEE., pp. 1-6, October 2012

[6] R. Faber, T. Jockenhövelb, G. Tsatsaronis, “Dynamic optimization
with simulated annealing,” Computers and Chemical Engineering, vol.
29, pp. 273–290, 2005

[7] D.B. Fogel, “Applying Evolutionary Programming to Selected Control
Problems.” Computers Math. Applic. Vol. 27, No. 11, pp. 89-104,
Pergamon., 1994

[8] Z. Michalewicz, C. Janikow, J. Krawczyk, “A Modified Genetic
Algorithm for Optimal Control Problems.” Computers Math. Applic.
Vol. 23, No. 12, pp. 83-94, 1992

[9] V. Mînzu,.”Optimal Control Using Particle Swarm Optimization”, The
5th IEEEE International Symposium on Electrical and Electronics
Engineering, 20-22 October, Galati, Romania, 2017

[10] V. Mînzu, et al., “A Binary Hybrid Topology Particle Swarm
Optimization Algorithm for Sewer Network Discharge.” Proc. of 19th
ICSTCC 2015, Romania, October 14-16, IEEE, pp 627-634. 2015

[11] J. Valadi and P. Siarry -editors, Applications of Metaheuristics in
Process Engineering, ISBN 978-3-319-06507-6, Springer, 2014.

[12] V. Mînzu, and A. Serbencu. Control structure for the optimal sewer
network discharge. In System Theory, Control and Computing
(ICSTCC), 2016 20th International Conference on (pp. 61-66). IEEE

590

